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Abstract

It is common for social science researchers to provide estimates of
causal e↵ects from regression models imposed on observational data.
The many problems with such work are well documented and widely
known. The usual response is to claim, with little real evidence, that
the causal model is close enough to the “truth” that su�ciently ac-
curate causal e↵ects can be estimated. In this chapter, a more cir-
cumspect approach is taken. We assume that the causal model is a
substantial distance from the truth and then consider what can be
learned nevertheless. To that end, we distinguish between how na-
ture generated the data, a “true” model representing how this was
accomplished, and a working model that is imposed on the data. The
working model will typically be “wrong.” Nevertheless, unbiased or
asymptotically unbiased estimates from parametric, semiparametric,
and nonparametric working models can often be obtained in concert
with appropriate statistical tests and confidence intervals. However,
the estimates are not of the regression parameters typically assumed.
Estimates of causal e↵ects are not provided. Correlation is not cau-
sation. Nor is partial correlation, even when dressed up as regression
coe�cients. However, we argue that insights about causal e↵ects do
not require estimates of causal e↵ects. We also discuss what can be
learned when our alternative approach is not persuasive.
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What I am trying to say throughout the book is that “doing”
the models consists largely in thinking about the kind of model
one wants and can justify in the light of the ideas whose validity
one is prepared to take responsibility for. (Duncan, 1975: viii)

1 Introduction

Perhaps the most widely known aphorism in the discipline of statistics is “All
models are wrong, but some are useful” (Box, 1979: 202). There are several
possible reasons for its celebrity. For an enterprise highly dependent on
models, it asserts that no model can be correct. At an epistemological level,
all models are by design abstract simplifications of some reality. Without
simplification, scientific progress can be very di�cult. At a practical level,
actually more consistent with the setting in which the aphorism was coined,
even if models could be correct in principle, researchers can never have
them. There are all of the well-known discrepancies between what a model
formally requires and what the data can deliver. Still, for many the take-
home message is that a wrong model may be of no special concern as long
as it is useful. This is surely comforting.

But there are complications. Far more clarity is needed on what is meant
by “wrong.” In addition, usefulness is multidimensional. A model may be
useful along one dimension and worse than useless along another. There
is often controversy, moreover, because one person’s use can be another
person’s abuse. At a deeper level, there are many kinds of models. The
social sciences are dominated by causal models. Other types of models
can have di↵erent strengths and weaknesses from which can follow di↵erent
bundles of uses.

In the pages ahead, we confront these issues within the causal modeling
tradition long popular in the social sciences (Goldberger and Duncan, 1973;
Duncan, 1975; Greene, 2003). From this perspective, a causal model is
a quantitative theory of how the data were generated in which a statistical
formalization for random variables is combined with a causal account derived
from subject-matter knowledge (Kaplan, 2009: Section 10.5). But, models
of data generation actually do not have to be causal. Causal mechanisms
can be seen as an interpretive overlay. We proceed in this fashion, but for
continuity with past methodological discussions in the social sciences, on
occasion retain the term “causal model” when referring to social science
practice.

We begin with conventional linear regression before examining semipara-
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metric and nonparametric formulations. Readers will find no fundamental
quarrel with Box’s view that all models are wrong. But we argue that the
best response is not to simply soldier on or try to patch things up around
the margins. The best response is to rethink the enterprise. With that done,
we will see that some wrong regression models can be useful, but not in the
ways often favored by conventional practice. This is a general lesson that
can apply beyond the particular models we discuss.

Sections 2 and 3 are devoted to clearing away some conceptual clutter.
Regression analysis is defined along with what it means for a regression
model to be “right.” Section 4 elaborates on what it means for a regression
model to be “wrong.” Section 5 addresses the properties of estimates from
a conventional linear regression when the model is wrong. Sections 6 and 7
broaden the range of regression models considered to include semiparametric
and nonparametric specifications. Section 7 o↵ers some broad conclusions.

2 Regression Analysis Defined

Cook and Weisberg (1999: 27) o↵er a definition of regression analysis that
corresponds well with much statistical thinking: “[to understand] as far as
possible with the available data how the conditional distribution of the re-
sponse y varies across subpopulations determined by the possible values of
the predictor or predictors.” The entire conditional distribution of y is con-
sidered, although in practice, attention is usually directed at the conditional
mean and/or conditional variance.1

The definition may be interpreted in two ways. Regression analysis can
be solely a descriptive tool for the data on hand (Berk, 2003). The data
are treated as a population. A bit more will be said about this conception
shortly. Alternatively, regression analysis applied to the data on hand can be
used for estimating properties of conditional distributions in the population
from which the data came or for estimating properties of conditional distri-
butions implied by the processes by which nature generated the data. This is
the more common and more ambitious perspective that will be emphasized
in this chapter.

There is nothing in either conception about hypothesis tests, confidence
intervals, or causal inference, and often researchers want more than descrip-

1This definition can apply to categorical response variables, manifest or latent re-
sponse variables, and response variables whose conditional distributions are related to
one another. So, for example, the generalized linear model is covered as well as multiple
equation models.
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tion or estimation. They want to properly represent the role of uncertainty
in any estimates using confidence intervals and/or statistical tests. They
want to make causal inferences as well; how would the response variable’s
distribution change if one or more explanatory variables were manipulated
independently of all other explanatory variables? These are all reasonable
aspirations.

At what point does one need to think about a model? There is no
mention of a model, let alone a causal model, in the Cook and Weisberg
definition of regression analysis. Models become relevant when one attempts
to draw inferences beyond the data on hand. The issues raised can be subtle.

3 A Regression Causal Model Defined

We begin with the ubiquitous linear regression model that can be written
as
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is the value of the response for case i, x
i

is a vector of p predictor
variables for case i, there are p regression coe�cients and an intercept �0,
and "

i

⇠ NIID(0,�2). This is a statistical formalization for the conditional
distribution of the random variable Y given X. There is nothing causal.

To arrive at a causal model, practitioners introduce a “response sched-
ule,” at least implicitly, that “... says how one variable would respond, if you
intervened and manipulated other variables...” (Freedman, 2009: 87). Re-
sponse schedules can be seen as mathematical, counterfactual formulations
of causal e↵ects (Berk, 2004: 84-90). A causal model marries a statistical
formalization with a response schedule so that causal interpretations can be
made (Kaplan, 2009: Section 10.8).

In this instance, one might say that nature sets for each case the values
of the predictors. These values are fixed in a statistical sense. Nature then,
in e↵ect, multiplies each predictor times its regression coe�cient and adds
those products to the value of the intercept. Finally, nature draws for each
case independently a disturbance from a normal distribution with a mean of
zero and some variance equal to �

2, and adds that disturbance to the linear
combination of predictors. The result is y

i

.2

2The properties of "i can be formulated other ways. For example, the causes of Y can
be organized into two groups: regressors with large causal e↵ects and regressors with small
casual e↵ects. In an early treatment that is representative, Hanushek and Jackson (1977:
82) distinguish similarly between “important” predictors and others. The variables with
small causal e↵ects are taken to be far more numerous than the variables with large causal
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Nature can repeat the last two steps a limitless number of times lead-
ing in principle to a population of all possible realizations of the data. For
each case, the values of the regression coe�cients, intercept, and predictors
do not change. Nor does the disturbance distribution. What changes over
realizations of the data is the value of the randomly drawn disturbance that
is added to the linear combination of the predictors. The result is a real-
ized conditional distribution for y

i

. One important implication is that the
uncertainty in y

i

comes exclusively from "

i

. Another important implication
is that the distributional properties of the realized "

i

are characterized over
a limitless number of independent draws of "

i

.3

Suppose for the moment that the data on hand are treated as a pop-
ulation. For example, the data may be a full enumeration of all students
enrolled in a given university, the inventory of a large warehouse, or a year’s
worth of financial transactions from a brokerage firm. For each, interest
centers on what can be learned about the data on hand. For example, is a
particular university in compliance with Title IX?

For a population, it is then no longer clear what conceptual benefits
a data generation model confers. The value of y

i

is generated only once,
and then the requisite properties of the realized "

i

on which the realized y

i

depends are not defined. For example, there is no E("
i

) because there is but
one realization of the disturbances for a given case i.

Under these circumstances, data analysis can only be descriptive. There
can be no statistical inference: estimation, confidence intervals or statistical
tests. Causal inference is also ruled out because the conventional counter-
factual framework cannot apply. One cannot work with “potential” (i.e.,
hypothetical) outcomes because there are none. The data on hand are all
that matter.4

e↵ects and to be independent of one another. Nature sets the values of the many small
causal variables too, but in the aggregate the result is disturbances that are e↵ectively

independent of the causal variables with large e↵ects. For formal results, this account
is too imprecise. Rather, it is common to assume “sparsity.” Sparsity requires that
some predictors have true regression coe�cients exactly equal to zero (not just small)
after conditioning on all other predictors in the model. Then as a theoretical matter,
a common question is whether a given model selection procedure will correctly identify
which predictors have such regression coe�cients (e.g., Leeb and Pötscher 2008b). The
“real world” sources of the disturbances are not addressed.

3In practice, this summary of how nature functions would need to be fleshed out with
specific subject matter knowledge. For example, why does nature work with a linear
combination of predictors, and how exactly does it do that? Still, at least a bit of math-
ematical license (e.g., a limitless number of independent realizations of the data) will be
required so that theorems of interest can be proved.

4In mathematical statistics, data on hand that might be seen as a population are some-
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We will, therefore, proceed in the rest of the chapter assuming the data
are a sample in the sense that the values observed could have been di↵erent,
and one could in principle see many independent realizations. At this point
in the discussion, the data need not be a probability sample from a real, fi-
nite population. Rather, the data are what Thompson calls a “model-based
sample” (Thompson, 2002: Section 2.7). The model represents the mecha-
nisms through which the data are “sampled” (i.e., generated) by nature.

Under model-based sampling, statistical inference is conventionally un-
dertaken with respect to the data generation process. The parameter values
to be estimated are those employed in that process. Of greatest interest
are usually inferences about the regression coe�cients employed by nature
when the predictors are linearly combined. But there is sometimes interest
in the conditional means of the response as well.

Statistical inference can follow directly from the formal properties of the
disturbances. Causal inference depends on how nature sets the values of the
predictors. If, for a given predictor, nature could set its values di↵erently
and independently of all other predictors, causal e↵ects can at least be de-
fined within the usual potential outcomes (i.e., counterfactual) framework.
Equation 1 can be used to make causal statements.

4 How Regression Causal Models Can Go Wrong

We now allow for a “working model” that represents what a researcher ac-
tually employs with the data. From a working model, a researcher tries to
learn about key features of the causal model. It follows that the relationship
between the working model and the causal model is critical. Ideally, the two
should perform in the same manner with respect to the causal model pa-
rameters being estimated. Researchers commonly proceed as if the working
model is the causal model, or that any di↵erences do not materially a↵ect
the conclusions reached.

Inferences from a working model can be compromised by two related
di�culties. First, the working model is wrong in a very obvious sense if it
does not accurately represent credible understandings, built into the causal

times treated as a random realization from a population of all possible realizations of the
data that nature could generate. Such populations are sometimes called “superpopula-
tions.” Although this formulation allows certain mathematical operations to play through,
the scientific payo↵ is obscure unless one has a credible theory for how the superpopu-
lation is generated and why the data to be analyzed are a random realization from that
superpopulation. But if one has such a theory, and if it is of the same form as equation 1,
the approach is essentially the same as the one just described.
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model, of how the data were generated. To take a simple instance, if one of
the predictors nature is supposed to use is not included in the working model,
the working model is by construction wrong. Thus, if a credible claim is that
educational attainment is a cause of earnings, and educational attainment is
not in the working model, the working model is wrong. Moreover, if nature
is said to linearly employ the log of a given predictor and the working model
includes the unlogged form, the working model is by construction wrong.

There are certainly deeper epistemological issues such as whether the
idea of a “true model” is an oxymoron. Yet, if there is no such thing as a
true model, it is di�cult to see how one would act on Duncan’s (1975: viii)
call to take responsibility for its validity. There is also ample precedent in
the social sciences for the idea of a true model: “A coherent relationship
between economic and statistical aspects of models seems very desirable in
order to reduce the possibility of inconsistent and unclear implications of
analyses” (Zellner, 1984: 30).

For present purposes, we sidestep such issues. They would take us into
di�cult territory that is peripheral to the goals of this chapter. What mat-
ters for the discussion to follow is simply whether the regression equation
estimated is consistent with existing claims of how nature generated the
data.

Second, it is sometimes unappreciated that Equation 1 determines the
meaning of each regression coe�cient. That is, the mathematical expression
for any single regression coe�cient depends on how all of the predictors
and the disturbances are combined. For example, with a di↵erent set of
predictors, or a nonlinear transformation of any predictor, the mathematical
expression for each regression coe�cient changes. Thus, if the working model
is wrong, so are the regression coe�cients. The regression coe�cients are
by construction not those that nature is supposed to employ.

In both cases, however, there can be an escape clause of sorts. The prop-
erties of any regression coe�cient estimates depend substantially on whether
for the working model each of the disturbances meet the conventional regres-
sion assumptions shown in Equation 1, and in particular whether E("

i

) = 0.
When for the working model, E("

i

) = 0, the regression coe�cients for the
causal model’s predictors included in the working model can be estimated
in an unbiased manner by applying least squares to the working model.5

5Consider a simple example. Suppose for a response variable Y there are in the causal
model two predictors that enter additively: X and log(Z). Because this is the correct
model E("i) = 0. Therefore, the disturbances and the regressors are unrelated. Now
suppose that the researcher does not know about Z, and it is not included in the working
model. If it is still true that E("i) = 0, the working model least squares regression
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This is, of course, a well-known property of least squares regression, and
some might claim that when the assumed properties of the disturbances
are met, the working model is not wrong. For this chapter, we think the
“escape-clause” characterization is more instructive, but in any case, it is
usually very di�cult with observational data to persuasively argue that all
variables omitted from the working model are uncorrelated with all the
included predictors and/or that the functional forms employed should be
treated as those used by nature. It then follows that the disturbances of
the working model do not have an expectation of zero. The assumption
of a common disturbance variance can be compromised as well. Because
the causal model means of Y are systematically underestimated or overes-
timated, statistical inference for those means and the associated regression
coe�cients is in serious jeopardy.

Causal inference is also compromised when the working model is wrong.
If E("

i

) 6= 0, the disturbances are confounded with one or more predictors.
Nature is assumed to make a clear distinction between the predictors and
the disturbances. A wrong working model does not.6

In summary, one can make a useful distinction between a causal regres-
sion model meant to represent how nature generated the data and a working
regression model applied to the data by a researcher. Sometimes researchers
proceed as if a working regression model is the same as a causal regression
model. At the very least, a strong justification should be provided grounded
in the particulars of the research being undertaken. Some researchers, with
the assistance of regression diagnostics, proceed as if the correspondence
between a regression causal model and a regression working model is close
enough. In practice, it is hard to know what “close enough” means, and
faith in regression diagnostics can be misplaced (Freedman, 2009). Perhaps
a better strategy is to think about what can be learned from working models
assumed to be substantially wrong.

coe�cient for X will be unbiased. Somewhat di↵erent reasoning applies if the researcher
mistakenly employs, say, Z instead of log(Z). Even if E("i) = 0, the working model least
squares coe�cient for X will be a↵ected unless both Z and log(Z) are uncorrelated with X
(i.e., mean independent). Still other reasoning applies if X is measured imperfectly. Even
random measurement errors with a mean of zero implies that E("i) 6= 0. For example,
education may be measured in years of schooling. But years of schooling is but a proxy
from what may really matters: increases in human capital. Biased estimated follow.

6There are statistical procedures, such as instrumental variables, that under ideal condi-
tions can overcome the confounding of predictors and disturbances. These ideal conditions
are di�cult to meet with observational data. In e↵ect, an auxiliary model is required that
has to be right. So, this escape clause too can be hard to exercise.

8



5 What Can be Properly Estimated from a Work-
ing Regression Model?

The approach we favor is to apply an alternative to the regression causal
model that can be more appropriate for observational data. This alternative
is called a “joint probability distribution model.” It has much in common
with the “correlation model” proposed by Freedman (1981), and is very
similar to a “linear approximation” approach formulated by White (1980a)
that, in turn, has important roots in the work of Huber(1967) and Eicker
(1963; 1976). Angrist and Pischke (2008; Section 3.1.2) provide very ac-
cessible and persuasive motivation. In short, much of what we propose has
been around in various forms for quite some time.

Suppose one claims that nature generates the data for each case as a
realization from some joint probability distribution composed of random
variables Z. That joint probability distribution can be characterized by the
usual sorts of parameters such the mean and variance for each variable and
the covariances between variables. There is no distinction between predictors
and responses. For each case, nature can independently generate a limitless
number of independent realizations of the random variables. Some might
wish to call the joint probability distribution formulation the “true model.”

For the random variables constituting Z, researchers will often distin-
guish between predictors X and responses Y. Some of Z may be ignored
because it is not relevant for the substantive or policy issues at hand. Such
decisions have nothing to do with how the data were generated. They have
everything to do with the preferences of researchers.

The distinction predictors and responses is usually motivated by inter-
est in the conditional distribution of some Y given X = x because the
distribution of Y is thought to change from one x to another x. Change
in its mean µ(x) is typically the primary concern, and it follows from how
nature generates the data that E(Y|X = x) = µ(x).7 But here, X is ran-
dom, so µ(x) is random. Therefore, researchers might also be interested in
E[µ(x)] = E(Y).8

An interest in how the mean of the response varies depending on the
values of predictors is shared with conventional regression models. Beyond

7Implied is that if one denotes the disparities over realizations between any µi and its
yi by "i, E("i)=0.

8If the predictors are treated as fixed, one cannot formally generalize the results to
values of the predictors not found in the data. There is also a problem with forecasts
because with fixed predictor values, there is no account for how the new predictor values
were generated.
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that common goal, the regression model and the joint probability distribu-
tion model part company. First, under the joint probability distribution
model, there is no a priori commitment to how the response is related to
the predictors and certainly no linearity requirement. Second, the predictors
have no special cachet. Among the random variables that nature can gen-
erate, the researcher decides to designate some as predictors. Third, there
is, therefore, no such thing as an omitted variable. Finally, there is nothing
causal whatsoever.

Suppose now that a working model assumes the conventional form of
linear regression. The set of conditional means over cases, µ, is assumed
to be related to X by µ = X�. Y is then taken to be X� + ", with "

i

⇠
NIID(0,�2). One might at this point choose to treat the random predictors
as fixed, although then the regression results cannot be generalized beyond
the particular x-values in the realized data.

For all of the reasons mentioned earlier, such a working model will usually
be wrong. In particular, it is compromised if the alternative joint probability
distribution model is credible. For example, it is almost certain that E("

i

) 6=
0. There is absolutely no guarantee, therefore, that µ = X�. Indeed, the
two will likely di↵er, often substantially. Nature did not use the equivalent
of X� to generate the conditional means of the response, but the researcher
is proceeding as if nature did.

Figure 1 illustrates some potential consequences. For a single fixed re-
gressor, the conditional means from the joint probability distribution model
(i.e. the gray filled circles) are plotted along with the expectation of the
conditional means from a linear working regression (i.e., the unfilled circles).
With a random regressor, the conditional means from the joint probability
distribution become conditional expectations. Note that the figure is a rep-
resentation of underlying statistical theory, not a conventional scatter plot
of data.

As a description, the linear working model shown in Figure 1 provides a
good sense of the relationship. However, the linear fit is biased at every pre-
dictor value. By definition, when a conditional expectation from the model
is not the same as a conditional mean (or expectation) from nature’s joint
probability distribution, there is bias. As a result, conventional statistical
tests and confidence intervals also will not perform as they should. Still,
some researchers might find a linear approximation useful, so it is worth
considering its properties in more depth.9

9If the conditional means of the joint distribution really do have a linear relationship
with the predictors in the working model, the linear approximation is no longer an ap-

10



X

Y

A Wrong Working Model

A Conditional Mean or Expectation for 
a Joint Probability Distribution Model

An Expectation from Linear 
Working Model

Figure 1: Bias in A Linear Working Model

In matrix notation, X denotes a full rank n⇥ (p+1) design matrix with
a leading column of 1s, and Y denotes the n⇥1 response variable. Both are
taken at face value. They are not analyzed as indicators, indices or proxies
for latent constructs.

For the moment, we will proceed conventionally treating X as fixed.
We denote the regression coe�cients from the linear working model by �
and the conditional means of the response that follow from X� by ⌫. One
can understand ⌫ as the best linear approximation of µ by a least squares
criterion.10

The vector of working regression coe�cients can be estimated in the
usual least squares manner:

�̂ = (XTX)�1XTY. (2)

As one would expect, it is highly unlikely that E(�̂) = � and E(X �̂) = µ.

proximation. There is, then, no bias in the least squares estimates with respect to the
joint probability distribution. This is an unrealistic scenario in practice because even if
the linear approximation were actually correct, there would be no way to definitively know
it. All one has is a realization from the joint probability distribution.

10We change the notation for regression model to underscore that we are no longer
trying to estimate the “true” conditional means or “true” regression coe�cients. Our
estimates are for the linear approximation.
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The e↵ort to obtain unbiased estimates of � and µ for the model µ = X�
stumbles.

But there is more to the story. Consider first the fitted values.

Ŷ = X(XTX)�1XTY = HY, (3)

where H is the usual hat-matrix. Taking the expectation,

E(Ŷ) = HE(Y). (4)

Equation 4 defines one “target” of the estimation. Just as in Figure 1, Ŷ
estimates E(Ŷ) = ⌫. In short, it can be shown that the conditional means ⌫
for the working regression model can be estimated in an unbiased manner by
the usual least squares procedures. When X is random, it can be shown that
the estimates are asymptotically unbiased (Berk et al., 2011b).11 In contrast
to usual social science practice, no assumptions are being made about the
properties of the disturbances from the working model. For instance, they
may be correlated with one or more of the predictors. One implication is
that there is no need disentangle the disturbances from the predictors so
that procedures using instrumental variables, for instance, are unnecessary.
Indeed, the usual econometric obsession with E("

i

) is no longer relevant.
In a similar fashion for fixed X,

E(�̂) = (XTX)�1XT

E(Y). (5)

Thus, �̂ estimates E(�̂) = �. The least squares estimates are unbiased with
respect to the working model’s regression coe�cients �. As before, when X
is random, it can be shown that the estimates are unbiased asymptotically
(Berk et al., 2011b). Once again, no assumptions are being made about the
properties of the working model’s disturbances. Researchers should find this
quite liberating, but it means that there will need to be a reconsideration
of the meaning and usefulness of some popular regression diagnostics. For
example, added variable plots may suggest ways in which the working model
can better approximate the conditional means of nature’s joint probability
distribution, but not whether the working model can become the true model
in the usual social science sense.

The regression coe�cients from the linear approximation have a handy
interpretation. Recall that a slope may be interpreted as the change in
the mean of the response as the value of the predictor varies. For a single

11All one requires is that [E(XTX)]�1 and E(XTY) exit. The asymptotics assume that
the number of predictors is fixed as the number of observations increases without limit.
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X

Y

The Least Squares Slope As an 
Average of Slopes

Least Squares Slope

A Conditional Mean From The Joint 
Probability Distribution Model

Figure 2: Interpretation of a Linear Approximation

predictor, the usual estimator for a least squares regression coe�cient can
be rewritten as

�̂ =

P
i

yi�ȳ

xi�x̄

(x
i

� x̄)2
P

k

(x
k

� x̄)2
, (6)

where the fraction in the numerator is the ratio for a given observation of
the mean-deviated value of the response and the mean-deviated value of
the predictor. The rest of the expression serves as a weight. Observations
farther from the mean of the predictor are weighted more heavily.12

Figure 2 illustrates what is being estimated. Eight of nature’s conditional
means are shown by the gray filled circles. The large black circle shows the
mean of the predictor and response from nature’s joint distribution. The
broken lines are the slopes for all pairs of conditional means that also pass
through the mean of Y and the mean of X. Finally, the solid line is the slope
of a linear approximation. It is the weighted average of the four other slopes.
It is too flat for two of the pairs and too steep for two of the pairs. Both
the individual slopes and the average slope are wrong. Still, it is perhaps
a useful summary of how Y and X are related. It carries much the same

12The subscripts i and k di↵er because the denominator is calculated first as a nor-
malizing constant. Gelman and Park (2008: 3) have an expression that is similar to
Equation 6.
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information as a partial correlation coe�cient but because the original units
of Y and X are retained, may be more easily informed by subject-matter
theory.

The same basic reasoning applies when there is more than one predictor.
The main di↵erence is that for any predictor, its values have been adjusted
for all other predictors. The covariance adjustments are undertaken within
the linear approximation. For that approximation, the usual results and
interpretations apply. But for the “true” model, they do not. The regres-
sion coe�cients may be altered too much or too little, and the conceptual
parallels to post-stratification no longer hold. It follows that the slopes of
the linear approximation cannot properly be given a causal interpretation.
The model in which the linear approximation is embedded is not a causal
model, and the role of each predictor cannot be separated from the role of
the disturbances. In short, it is di�cult to know from a linear approximation
regression coe�cient what would happen if its predictor were manipulated.

Although there is usually no substantive interest in �

2, one typically
needs an estimate of it for conventional, fixed X, standard errors. If �̂2 is
obtained using the least squares approximation of µ, the �̂

2 will be esti-
mated incorrectly. The estimates of �̂2 will capture not just the random
variation in the disturbances, but the disparities between the conditional
means from nature and the conditional expectations from the linear approx-
imation. The result for the approximation regression coe�cients will be
confidence intervals that are wrong for the stated coverage probabilities and
statistical tests that are wrong as well. Both results can be misleading but
may be acceptable for some researchers.

In summary, if a linear approximation can be descriptively useful, some
helpful statistical properties can follow. In particular, unbiased estimates
or asymptotically unbiased estimates of the working model’s regression co-
e�cients and conditional means may be obtained. This holds even though
the disturbances from the working model do not have to meet the usual
regression assumptions. Incorrect, but perhaps useful, confidence intervals
and statistical tests can directly follow. At the very least, the variance of
the estimates can be properly represented. Yet, the regression coe�cients
cannot properly be given causal interpretations. They have much the same
conceptual status as partial correlation coe�cients. And correlation, even
partial correlation, is not causation.
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5.1 More on Statistical Tests and Confidence Intervals

Resampling statistical inference is available within a framework in which the
data are a realization from a joint probability distribution. All of the vari-
ables are random, even those selected to be predictors. When X is treated
as random, recall that least squares procedures produce for the linear ap-
proximation asymptotically unbiased estimates of the regression coe�cients
and the conditional means of the response. Then, the nonparametric boot-
strap in which rows of the data are sampled randomly with replacement,
can be used with real data to provide asymptotically appropriate statistical
tests and confidence intervals (Mammen, 1993). In finite samples of modest
size, it is di�cult to know how much credibility any inferential claims might
have, but the bootstrap can at least provide estimates of the variability of
parameter estimates from realization to realization. One can have stability
intervals should confidence intervals not be appropriate.

The same bootstrap works if the data are a random sample from a well-
defined population (Freedman, 1981).13 There is now no necessary role for
nature. Humans generate the data on hand. The estimation targets are the
finite population versions of ⌫ and �.

5.2 A Further Fallback Position

Although the joint probability distribution model and the conditional proba-
bility distribution model are not as demanding as the linear regression model,
they too can be wrong in the sense discussed earlier. Perhaps most funda-
mentally, one must explain how nature manages to generate independent
random realizations of the data from the same joint probability distribution
or at least, why it is helpful to think about nature’s actions in this manner.
How is the science being advanced? For example, a claim that the data for
each case are realized independently can be a problem, especially for spatial
or temporal phenomena. Another challenge, if a key goal is causal inference,
is to take account of casual processes explicitly in the means by which nature
is supposed to have generated the data. One approach might be to envision
realizations from conditional distributions defined by di↵erent values for the
(fixed) causal variables. The response and the covariances would remain
random variables.

A second option, discussed extensively elsewhere (Berk, 2003), is to give
up on the goals of statistical inference and causal inference, and focus on

13The papers by Freedman and Mammen were in a general way anticipated by Fisher
in 1924.
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description. Much of the empirical work currently undertaken in the social
sciences is primarily descriptive, despite causal modeling claims. And good
science can begin with good description. The examples presented shortly
can be seen as illustrating a descriptive approach if a parametric modeling
framework o↵ered does not seem plausible.

6 Nonparametric Regression

The linear approximation approach has the advantages of simplicity and
tractability. But there can be situations in which a nonlinear approximation
is preferred. The conditional means of Y in a data set may appear to
have strong nonlinear relationships with the predictors, and a nonlinear
approximation may make more subject-matter sense as well.

There is sometimes accepted substantive theory that dictates the par-
ticular nonlinear functions required. One can then proceed much as when
the approximation is linear. But, in many applications there will be no
such guidance. Under these conditions, can the data be used to arrive at a
reasonable nonlinear approximation? The answer is a qualified yes, which
opens the door to semiparametric and nonparametric regression.

6.1 A Nearest-Neighbor Method: Indicator Variable Regres-
sion

Assume, as before, that nature generates the data as if by random sampling
from the joint probability distribution. Random variables X and Y are
designated by a researcher. For the joint distribution, there is again µ,
the conditional means of Y given X. These are nature’s conditional means
whose values are to be estimated. So far, there is nothing new.

Rather than assuming a linear function by which Y is related to X,
a more flexible approach is taken. The conditional mean function is not
specified. The “true” model now can be written as

y

i

= µ+ "

i

, (7)

where µ represents, as before, the conditional means from nature’s joint
probability, and " is a disturbance term about which no assumptions are
made. It follows from the definition of a conditional mean that E("

i

) = 0.
Equation 7 is not a statement about how the data were generated. That

matter is already resolved in a di↵erent fashion. Equation 7 is a statement
about particular relationships in nature’s joint probability distribution. In-
deed, it may be easier to think about the disturbances as population-level
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residuals. Equation 7 is not, therefore, a conventional regression model, and
causality has no explicit role. Put another way, we are replacing a linear ap-
proximation with a potentially nonlinear approximation. The catch is that
we don’t know what form the nonlinear approximation takes. We need to
learn that from the data.

There are a number of ways to empirically proceed. Primarily for didac-
tic purposes, we begin with a variant of the conventional linear regression
model in part to introduce some important ideas in a familiar setting, and in
part to stay within a regression framework that we will carry through sub-
sequent material. Can linear regression be used to provide good estimates
of µ and the unknown f(X)?

Suppose a researcher is, on subject-matter grounds, interested in the
phenomenon captured by Equation 7. For ease of discussion, assume that
X is a single, quantitative predictor that for purposes of analysis is treated
as fixed. One simple way to construct estimates of µ is to replace the values
of the single predictor with one indicator variable for each observed value of
X. Least squares procedures can then be properly applied to the multiple
regression specification. The systematic part of that multiple regression is a
weighted sum of step functions.14 Each ŷ

i

from the regression is an unbiased
estimate of µ

i

, and when paired with the corresponding x
i

(i.e., the predictor
in its original form), provides a description of how the response is related to
the predictor. Often the relationship is shown within a scatter plot format
as an interpolation of adjacent conditional means.

The same approach and happy results might seem to apply when there is
more than one predictor as long as each is represented by indicator variables
in a similar fashion.15 For example, if there are 20 values for years of age
and 10 values for years of eduction, there are 19 indicators variables for age
and 9 indicator variables for eduction. We seem to have a solution.

Unfortunately, we do not. First, if in the realized data any values for the
predictors are not present, the conditional means for those values cannot
be estimated. For example, suppose in the joint distribution, the predictor
age is measured by year from 18 and 60 years old. But suppose that in the
realized data, there are no 20-year-olds. The mean of the response variable
for 20-year-olds cannot be estimated. Thus, even for the single predictor

14This actually is a little tricky. If there is one observation for each x-value, and if there
is an intercept in the model, one of the indicator variables must be deleted. Otherwise,
the predictor cross-product matrix cannot be inverted in the usual manner. The problem
disappears if there is no intercept but then the regression coe�cients do not have their
usual meaning.

15Categorical predictors would already be included as one or more indicator variables.
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case, some conditional means may not be estimated, which implies that the
estimate of f(X) is incomplete — there are some holes.

Second, because the number of observations with the same predictor
values will usually be small (even just one), the distribution of the 1/0
indicator will be highly skewed and, consequently, have very little variance.
The result is substantial instability and large standard errors for an estimate
of the conditional mean.

Third, to guarantee unbiased estimates of µ, one needs to include indi-
cator variables so that the regression specification is saturated. Even with a
modest number of predictors, the number of indicator variables can become
unmanageable. If a subset is to be used, which subset?

All three problems are exacerbated by the “curse of dimensionality”
(Hastie et al., 2009: 22-26). As the number of predictors increases, the
predictor space that must be filled by the data increases very quickly in
a multiplicative fashion. In principle, every possible crossing of predictor
values requires observations. For example, if there is a single predictor with
10 values, there are 10 locations that need data. If there are two predictors
with 10 values each, there is 100 locations that need data. If there are three
predictors with 10 values each, there are 1000 locations that need data. In
the same fashion, if there are four predictors, there are 10,000 locations.
And so on.

One might think that a good solution is to construct the indicator vari-
ables over ranges of the predictor values. For example, rather than having
an indicator for each year of age, one might have an indicator for age in 5-
year intervals. Then, estimates of the conditional means would be obtained
for each age interval. But grouping the data in this fashion introduces a
tradeo↵ between bias and variance. By making the indicator variables more
coarse, the variance of each may be increase (i.e., the distribution is more
balanced), and each conditional mean will likely be estimated with greater
precision. This is good.

But in exchange, there will likely be a decrease in accuracy. Suppose, for
example, that an age indicator is defined for ages 21-25. The observations
for each year of age from 21 through 25 get an indicator code of “1.” Unless
each year of age has the same conditional mean for the response, there will
be bias.

The bias-variance tradeo↵ is quite general. Many popular methods used
to reduce the variance of estimates will increase the bias (and vice versa). A
key implication to which we will return is that to obtain estimates that are
on the average as close as possible to their estimation targets, one should
try to minimize the combined impact of the mean and the variance. More
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formally, the goal is to minimize mean squared error in the estimate, which
is equal to the sum of the squared bias and the variance. Biased estimates
can be desirable if they also have relatively little variance.

Another general point is that indicator variable regression is related to
a number of procedures that will generally perform better. In particular,
indicator variables represent fixed, disjoint predictor intervals. There are es-
timation procedures that allow for intervals that can vary in size, sometimes
depending on how the response is related to the predictors. The intervals
also do not have to be disjoint. A popular and e↵ective illustration is “lo-
cally weighted scatterplot smoothing” (lowess). An excellent discussion of
such matters can be found in Hastie and Tibshirani (1990, Chapters 2 and
3). In the pages ahead, however, we will follow a di↵erent path more directly
related to the issues raised in this chapter, more closely linked to conven-
tional regression approaches and more easily extended recent regression-like
advances, such as the Lasso (Tibshirani, 1996).

6.2 Smoothing Splines

The data are once again a realization from nature’s joint probability dis-
tribution. As before, both Y and X are random variables. For nature’s
joint probability distribution, we impose a new requirement. For the condi-
tional distribution of Y|X, bounded second derivatives exist over the range
of X. In that sense, f(X) is smooth. In practice, this is not an especially
restrictive assumption because a smooth function can still be highly non-
linear. What we get in return is the ability to more systematically address
the bias-variance tradeo↵. In particular, a penalty term is appended to the
usual least squares procedure. For a single predictor treated as fixed, this
leads to

PSS(f̂ ,�) =
NX

i=1

[y
i

� f̂(x
i

)]2 + �

Z
[f̂ 00(t)]2dt. (8)

PSS stands for penalized sum of squares, which is to be minimized con-
ditional a penalty parameter �. The first term on the right-hand side is just
the usual residual error sum of squares. The f̂(x

i

) in Equation 8 plays the
same role as the ŷ

i

one would normally expect but is used to emphasize that
the requisite function of the predictor is to be determined as part of the
minimization process.

The second term imposes a cost for the complexity of the fit. The integral
of the second derivatives over X defines the complexity penalty. It produces
a summary of how sharply the slope of the fitted values changes over the
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values of the predictor.16 A larger value means that the f̂(X) is more
“rough.” A smaller value means that the f̂(X) is more “smooth.”

Once the summary measure of roughness is computed, the penalty pa-
rameter � determines the weight given to that penalty in the fitting process.
As � increases, the usual least squares line is more closely approximated.
In the limit, no second derivatives are permitted because f̂(X) is a straight
line. As � approaches zero, the fitted values more closely approximate the
interpolation results.

The bias-variance tradeo↵ is clearly evident in Equation 8. When � is
larger, the fitted values are forced to be smoother. The likely consequence is
more bias and less variance. When � is smaller, the fitted values are allowed
to be rougher. The likely consequence is less bias and more variance.

The value of � is usually determined empirically. One tries to minimize
an estimate of the integrated squared prediction error, which is essentially
an out-of-sample sum of squared residuals. However, it is important to apply
substantive information as well. If the fitted values are too smooth or too
rough, given what is known about the phenomenon, the value of � should
be adjusted accordingly.

Computational strategies for Equation 8, based on B-splines, are dis-
cussed in Hastie et al. (2009: 189). They lead to a “smoother matrix”
conditional on the value of � and denoted by S

�

from which fitted values
are constructed.17 Like the usual regression hat-matix, S

�

is N ⇥N . Fitted
values are produced in an analogous fashion: Ŷ = S

�

Y. Consequently, the
fitted values are a linear combination of the Y, and Equation 8 is one of a
class of linear smoothers.18

Much as for the indicator variable linear regression discussed earlier, Ŷ
can be paired with X to approximate nature’s f(X). As we show next,
plots can be very instructive. But the estimation details are tricky. It can
be shown that as N ! 1 and � ! 0, estimates of f(X) from converge to

16In f

00(t), the t is just a placeholder because when there is more than one predictor,
there can be several sensible ways to represent the fitted values (Hastie et al., 2009: 165-
167).

17The trace of the smoother matrix is the “e↵ective degrees of freedom” used by the
smoothing procedure, which plays the same role as the model degrees of freedom in con-
ventional regression.

18There are many kinds of linear smoothers including local means, local linear fits, and
local polynomials that can be employed within kernel functions. The lowess procedure
(Cleveland, 1979) is one popular example. We focus on smoothing splines here because
it is a natural extension of least squares regression, commonly available, and e↵ective in
practice. Readers seeking a more extensive treatment of smoothing should consult Hastie
and colleagues (2009: Chapters 3, 5 and 6).
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nature’s f(X). However, in finite samples, bias remains. We are construct-
ing a particular nonlinear (rather than linear) approximation of nature’s
conditional means.

One might think that, just as in the linear case, the expectation of the
nonlinear approximation is being estimated in an unbiased fashion. The
estimation target would then be the nonlinear approximation for nature’s
joint probability distribution, not µ.19 But there are significant complica-
tions. Because the function is nonlinear, the function estimated depends
on the particular set of predictor values that are realized. Also, the tuning
parameter � is usually determined from the data. As a result, there is model
selection that also can introduce bias. These and other factors raise esti-
mation questions that are unresolved and beyond the scope of this chapter.
How to proceed in practice will be addressed shortly.

6.2.1 An Example

Figure 3 shows a smoothing spline in action. The solid line represents f̂(X),
and there is a rug plot along the horizontal axis. For a large American city,
the log of the number of homeless individuals in a census tract has been
regressed on the log of the proportion of housing units in a tract that are
vacant.

The mass of the data falls between values of about .02 (i.e., e�4) and
.14 (i.e., e�2) for the proportion of dwellings that are vacant. With � deter-
mined by the generalized cross validation statistic, f̂(X) is S-shaped. It is
essentially flat from proportions near zero to a proportion of about .05, then
steeply positive up to a proportion of about .15, and then flat once again.
The average number of homeless in a census tract increases from essentially
zero to about 4 (i.e., e1.4), but only for vacant dwelling proportions between
about .05 and .15.

Figure 3 is not the product of a causal model. Yet, there are perhaps
causal interpretations. For example, the S-shaped relationship may repre-
sent a tipping point process with an upper constraint. A certain concen-
tration of vacant housing is required before homeless individuals or families
begin to move in. Above that concentration, there is a clear signal that
there are opportunities for squatters. But there are also constraints that
keep the number of homeless in a census tract in check even when a rela-
tively large proportion of the housing is vacant. Perhaps when the homeless
are numerous enough to be deemed a nuisance, the police are notified. At

19The estimation target is the nonlinear approximation within nature’s joint probability
distribution
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Figure 3: Homelessness as a Function of Vacant Dwellings

the same time, the variation in the fitted values is small so that the tipping
phenomenon is not strong. We will return to this issue later.

Also included in Figure 3 is what is commonly promulgated as the point-
by-point 95% confidence interval. The interval widens dramatically with
X-values less than about -3.5 and greater than about -2. It is di�cult to
get a good fix on the functional form in the tails of the predictor where the
data are sparse. But to understand what a point-by-point interval really
means we need to consider in somewhat more depth statistical inference for
smoothing splines.

6.2.2 Statistical Inference for Smoothing Splines

Equation 7 is meant to approximate the relationship between µ and X.
Even with a very large sample, however, the approximation will be imper-
fect, and the use of penalized regression implies that estimates of the fitted
values will be biased. The estimation procedure implicitly trades variance
against bias. Moreover, the value of � was determined empirically, which in-
troduces model selection biases even for estimates of the expectations of the
nonlinear approximation. In short, f̂(X) is surely biased, whether for f(X)
or its nonlinear approximation, perhaps substantially, so that conventional
statistical tests and confidence intervals do not perform as they should.
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One might think that the nonparametric bootstrap would once again be
helpful. But there is apparently nothing that can be done about predictor
values not in the realized data set and the other sources of bias. Conse-
quently, one would be bootstrapping biased estimates of f(X). Confidence
intervals would not have their stated coverage, and test statistics would not
produce accurate probabilities under the null hypothesis (e.g., .02 might
really be .18).

The key point is that under current practice, point-by-point confidence
intervals are constructed — and the nonparametric bootstrap is certainly
a good way — so that they are actually “stability intervals” that capture
only the variance, not the bias, in the fitted values. They convey how much
the fitted values will likely vary over realizations of the data, but they say
little about how often µ falls within the stability band. And unfortunately,
the estimation problems carry over to the nonlinear approximation and its
estimates of ⌫. Even for ⌫̂, it seems that the best one can do is stability
intervals.

Nevertheless, the intervals shown in Figure 3 are helpful. They suggest
that f̂(X) should not be taken very seriously toward the tails of X. What
appears to be the absence of a relationship might actually be positive or
negative.

6.2.3 Causal Inference for Smoothing Splines

Causal inference for smoothing splines is inherently problematic. There is no
causal model within the joint probability distribution framework. And even
if Equation 7 were reinterpreted as such, the estimation procedures typically
introduce bias. In the end, one cannot isolate the role of the predictor from
the role of the disturbances.

6.3 The Multivariate Case

Smoothing splines can be e↵ective when there is more than one predictor.
The regressors X become a conventional n ⇥ (p + 1) matrix. In principle
f(X) can more than two dimensional — with two predictors, for instance, it
would be a surface not a line. But the curse of dimensioning intrudes once
again.

A popular fallback position is to make the f(X) additive. The additive
form is familiar, relatively easy to work with, and like additive models more
generally, performs surprisingly well in a variety of settings. In this spirit,
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we proceed with

y

i

= ↵+
pX

j=1

f

j

(x
ij

) + "

i

, (9)

where no assumptions need be made about "
i

. The expectation of Equation 9
can be seen as a nonlinear approximation of µ derived from an additive
approximation of f(X).

Equation 9 has an intercept represented by ↵ followed by the sum of
p functions, one for each predictor. There are no regression coe�cients.
Their role is absorbed in each predictor’s functional form — technically
there can be a limitless number of slopes as the first derivative of the function
changes. Therefore, the substantive story for each predictor is primarily in
visualizations of various kinds, as it was for one predictor.

The intercept is not identified, but under the assumption that the average
of the functions over the data is zero, the intercept is the average of the
response variable (Hastie et al., 2009: 298). The mean of Y thus serves as a
baseline. This seems to be a harmless constraint, much like the identifying
restrictions used in analysis of variance.

We will continue to emphasize quantitative response variables, but Equa-
tion 9 can be generalized in the spirit of the generalized linear model (GLM),
in which case it is called the generalized additive model, or GAM for short
(Hastie and Tibshirani, 1990). There are, for example, formulations for
binary response variables and count response variables leading to general-
izations of binomial regression and Poisson regression respectively.

Estimation for Equation 9 at first seems daunting. The functions need
to be “partialed” in the same manner that the regression coe�cients are
in conventional linear regression. But the requisite residualizing process
cannot be undertaken with unknown functions. The backfitting algorithm
provides a solution (Hastie and Tibshirani (1990: 91) by cycling back and
forth between smoothing for each predictor in turn and “partialing” for the
dependence between predictors.20

20

1. Initialize: ↵ = ave(yi), and fj = f

0
, j = 1, . . . , p with linear functions.

2. Cycle: j = 1, . . . , p, 1, . . . , p, . . .

fj = Sj(y = ↵�
P

k 6=j fk|xj),

where Sj is a smoother matrix.

3. Continue #2 until the individual functions don’t change.
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Each nonparametric term in Equation 9 requires a value for its �, or
some other penalty parameter. Within the backfitting algorithm, therefore,
the function of each nonparametric term is estimated largely as described
for the single predictor case.21 Clearly, there is a lot of heavy computing
required. Somewhat surprisingly, current implementations of GAM (e.g.,
in R) usually run quickly except when the predictors are highly correlated.
Then, convergence can be a problem.22

Equation 9 is considered “nonparametric.” Although an additive form is
required, no particular function for each predictor is imposed. Within this
nonparametric approach, one can also include functions of predictor pairs so
that one fits a surface rather than a line. In other words, functions of indi-
vidual predictors and predictor pairs can be specified in a single regression
equation.

The backfitting algorithm works in the same manner if particular func-
tions are assumed for some of the predictors. For example, one predictor
may be assumed to have a logarithmic relationship with the response. One
can combine a weighted sum of smoothers and a weighted sum of conven-
tional linear functions of predictors. For the former, the weights are assumed
to be 1.0. For the latter, the weights are the usual regression coe�cients.
The result is a “semiparametric” regression. Finally, if explicit functions are
imposed a priori on all predictors, one has returned to the generalized linear
model, a form of parametric regression. One can still employ the backfitting
algorithm or return to the usual GLM estimation procedures.

For each of the three GAM variants, categorical predictors are permit-
ted. However, smoothing categorical predictors makes little sense. They
perform, therefore, just as they do in conventional linear regression.23 In-
teractions can be addressed by including products of the relevant predictors.
Measures of fit (e.g., the AIC) can be computed and just as in the single
predictor case, standard confidence intervals and statistical tests are usually
o↵ered. Just as in the bivariate case, however, conventional statistical infer-
ence is problematic. All of the earlier issues reappear. Statistical tests and
confidence intervals no longer have their stated properties. At this point,
the best one can do is compute stability intervals.

21For the backfitting binomial and Poisson variants, penalized maximum likelihood es-
timation is applied to each nonparametric regression term. In practice, this leads to the
usual iteratively reweighted least squares algorithm but with the penalty term included.

22There are two versions of GAM in R, one contained with the library gam and one
contained within the library mgcv.

23Binary response variables are not a problem because the associated probabilities can
be transformed into logits, which are quantitative.
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6.4 A GAM Illustration

As before, the data come from Los Angeles county which arguably has the
largest homeless population of any county in the country. The unit of anal-
ysis is the census tract, and there are 509 of them in the data set. Census
tracts were selected by stratified random sampling from a population of 2054
census tracts (Berk et al., 2008). The sampling was motivated substantially
by the need to reduce data collection costs.

For the nonlinear approximation, the response variable is again the log
of the number of homeless individuals in a census tract, obtained through
a street count. The details need not trouble us here. (See Berk et al.,
2008.) For this analysis, the predictors are (1) median household income,
(2) the proportion of land used for residential purposes, (3) the log of the
proportion of dwellings that are vacant, (4) the proportion of land used for
commercial purposes, and (5) the proportion of residents that self-identify as
a racial/ethnic minority. Past research was used to select these predictors,
but there are no doubt important predictors being overlooked. For example,
there are no measures of services and shelters available to the homeless that
no doubt attract homeless individuals and families to certain census tracts.
There are also no measures of police practices that can make some census
tracts less attractive.

To illustrate the flexibility of the approach, the predictors are handled in
three ways. There is two-predictor smooth, a pair of one-predictor smooths,
and a single predictor with the usual linear form imposed. The model is
semiparametric.

For the two single predictors entered in a nonparametric fashion, smooths
were estimated by smoothing splines. For the pair of predictors entered in
a nonparametric fashion, thin plate splines was used.24 Penalty parameters
for each term on the right side were determined empirically using the gener-
alized cross-validation statistic, but they were then evaluated for substantive
credibility as well. About 30% of the variance is accounted for.25

The key output can be seen in Figure 4. The graph in the upper left
is a perspective plot of the results for the two-predictor smooth. The two
predictors are median income and proportion residential. There are some
holes in the surface where there are no data.

24Thin plate splines fit a two-dimensional surface to the data (Hastie et al. 2009: Section
5.7).

25The software provided a joint test for the null hypothesis that none of the predictors
was related to the log of the number of homeless. The null hypothesis was rejected at well
below conventional p-values. As already discussed, however, the meaning of such tests is
obscure in this context.
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Figure 4: GAM Output.
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Median income and the proportion residential should be negatively re-
lated to homelessness. In addition, median household income should matter
less when the proportion of land that is residential land is lower, because
there is a lower density of households to begin with. We used a two-predictor
smooth to capture this interaction e↵ect as well as any main e↵ects. When
there are no interaction e↵ects, the predictors properly can be entered sep-
arately.

The vertical dimension represents the response variable. The label in-
dicates that it is the smoothed fitted values that are plotted, and that the
smooth uses up 16.96 degrees of freedom. Smoothers can have fractional
degrees of freedom, but otherwise convey much the same information as de-
grees of freedom in linear regression models. In this example, a relatively
large number of degrees of freedom is used up, indicating that the surface is
very di↵erent from a plane. This is also apparent from the plot.

In Figure 4, if there is an interaction between median income and pro-
portion residential, it is not readily apparent to the eye. Moreover, when the
two predictors were entered separately and the approximation re-estimated,
the quality of the fit did not degrade.26

Median income has a negative relationship with the response that is
stronger when median income is above about $50,000. There is no sub-
stantive reason to take the smaller ripples seriously, and they are almost
certainly well within any sensible error bands.27 Likewise, the upturn in the
surface at very high incomes would be di�cult to distinguish from noise.
The proportion residential also has a negative relationship with the log of
the number of homeless, but the relationship is weak.

As a descriptive matter, here is what is going on. For census tracts that
are alike with respect to the proportion of dwelling units that are vacant,
the proportion of land used for commercial purposes, and the proportion of
residents who are minorities, tracts with higher median income have fewer
homeless. This relationship is especially strong when median income is more
than about $50,000. At the extreme, the di↵erence between a very poor
tract and a very rich tract is on the average about 30 homeless individuals

26When the relationships with a response are linear in both dimensions, and when there
are no interactions, the fitted values form a plane. Along either dimension, the slope does
not change with the values of the other dimension. Interactions cause the plane to be
torqued. The same reasoning applies when either or both of the relationships with the
response are nonlinear (here, especially for median income). When the surface is torqued,
the function for one dimension changes with values along the other dimension.

27It is not clear how to show error bands in three dimensions without making a plot
unreadable.
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when the tracts are otherwise alike. In short, local a✏uence is inversely
related to homelessness, especially for wealthier communities, even if you
take into account measures of a tract’s racial composition, the condition of
its residential housing, and the land use.28

The upper right graph is a one-predictor smooth for the logged propor-
tion of dwellings that are vacant. Nearly 4 degrees of freedom are used up
indicating that we are again some distance from a linear relationship. (A lin-
ear relationship would have used up 1 degree of freedom.) The relationship
has much the same structure described earlier when no statistical controls
were employed.

The lower left graph is a one-predictor smooth for the proportion of
land that is used for commercial purposes in a census tract. A little over 6
degrees of freedom are used up indicating that the relationship is substan-
tially nonlinear. One can see that the relationship is largely flat until the
proportion tops about 80%. At that point, the relationship turns sharply
negative. There are very few observation on the far right of the graph, but
taking the reported error band into account still suggests a substantial neg-
ative association after adjustments for the other predictors. Moreover, the
highest values represent Los Angeles county’s downtown census tracts that
are dominated by large, upscale commercial buildings (e.g., for corporate
headquarters). The area is very well policed, and there is a large number of
private security guards. The homeless are not welcome. So, the relationship
revealed makes sense even when adjusting for predictors such as median
income.

The lower right graph is a one-predictor plot of the imposed linear re-
lationship between the proportion minority in a census tract and the log of
the number of homeless. Taking the log units of the response into account
indicates that the slope is not very steep. Indeed, the di↵erence between
a tract that is exclusively minority and a tract that is nearly exclusively
non-minority is about half a homeless person. If you know a tract’s median
household income and a key measure of the the quality of its housing stock,
race by itself is not important. Homeless individuals are not disproportion-
ally found in minority areas, other things roughly equal.

A plot of the residuals against the fitted values showed that the model
to be inadequate in at least one important way. The homeless distribution
is skewed to the right. 75% of the tracts have less than about 35 homeless
individuals, and 25% have less than 6. But a few tracts have more than 300,

28The adjustments for related predictors are approximations too. There is no direct
correspondence to post-stratification as there is in conventional linear regression.
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and one tract has over 900. Even using the log of the homeless count, the
model grossly underestimates the counts in these census tracts. One reason
is that in the tracts with very large numbers of homeless individuals, the
homeless live in squatter, homeless encampments (e.g., near downtown “skid
row”). Encampments have very di↵erent dynamics from small and transient
concentrations of homeless individuals. Another reason is that social services
for the homeless are concentrated in areas with larger numbers of homeless
people, which likely makes those areas more hospitable to the homeless. As
noted earlier, predictors to capture such phenomena were not available in the
data. In short, the descriptive content of the results is at least incomplete.

Broadly speaking, estimation is not a problem for these data. The data
are a real random sample. Researchers sampled census tracts from a real
population of tracts. The fitted values and plots can be taken as approx-
imations of the population’s features. They are biased approximations for
the reasons discussed earlier, but for researchers interested in the distri-
bution of homeless individuals in Los Angeles, the approximations provide
rich information that can support understanding. They can also help inform
causal accounts. In short, we have a finite population version of our joint
probability distribution model.

More problematic are confidence intervals and statistical tests. Once
again, the estimation procedure precludes conventional approaches. But
stability intervals can still be helpful. We applied the nonparametric boot-
strap as described earlier with the percentile method, and interpretations of
the results did not change materially.

7 Summary and Conclusions

Researchers routinely work with causal regression models that are wrong
but proceed as if the models are right. This leads to any number of con-
ceptual confusions beginning with the parameters to be estimated. The
statistical inference that follows is then incorrect. In practice, confidence
intervals and statistical tests will not perform as researchers assume, and
misleading statistical inferences can follow. Causal inference is also compro-
mised. When pushed, researchers will acknowledge that their models are
not literally right, but that they are close enough. However, “close enough”
is usually undefined, and a factual basis for the claim is obscure. A further
retreat concedes that the causal model may be substantially wrong, but that
it is useful nevertheless. At that point, unfortunately, most anything goes.

Is there a better way? Our approach begins with nature generating
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the data as a random realization from a joint probability distribution. Re-
searchers designate a response Y and predictors X. The conditional means
of Y given X are often of substantive interest. The relationship between Y
and X, denoted by f(X), is usually of substantive interest as well.

Parametric, semiparametric, or nonparametric approximations are read-
ily available. Parametric approximations can be easy to estimate and easy
to interpret. Semiparametric and nonparametric approximations are richer
and can perform well, but they are more complicated. In particular, statis-
tical inference is problematic. Currently, the best one is likely to do is to
capture the sampling variance. None of the three approximation flavors pro-
vide estimates of causal e↵ects, but the results can inform and be informed
by causal reasoning.

The joint probability distribution model is less ambitious than the re-
gression causal model. But it has several important assets. It can be far
less vulnerable to untestable assumptions, and it has fewer of those assump-
tions to begin with. It also has broader applicability not just for parametric,
semiparametric, and nonparametric regression, but for machine learning and
multivariate statistics in general. And perhaps most important, it provides
a reasoned framework for what most social science researchers are actually
doing. At the same time, a model based on nature’s joint probability distri-
bution can be wrong too.

With all of the problems that models cause, are any models worth the
e↵ort? If the research goal is description, models are no longer relevant.
Focus in on the data itself, not how the data came to be. But if a researcher
wants to make claims beyond the data on hand, a suitable object for any
generalizations must be defined, and a conceptual road map to that object
must be provided. And that is precisely what a model does. We suggest that
nature’s joint probability distribution can be an appropriate and tractable
target for a wide variety of data-driven generalizations, and treating the
data as a random realization from that distribution supplies the road map.

There is nothing in our formulation that precludes a consideration of
causal e↵ects. Causal thinking can help inform how a statistical approxima-
tion is specified, and causal thinking can be instrumental when results need
to be interpreted. Our approach precludes using regression models with
observational data to obtain estimates of how on the average a response
variable will change if a given predictor is manipulated independently of all
other predictors. If such estimates are desired, the best option is likely to
be a randomized experiment or a strong quasi-experiment. If these are not
available, there are analysis procedures, not based on conventional regres-
sion, that may have more promise (Rosenbaum, 2009; 2010).
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